Where Do You Get Titanium
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titanium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | silver grey-white metal | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard diminutive weight A r°(Ti) |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titanium in the periodic tabular array | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic number (Z) | 22 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group | group four | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Period | period four | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Block | d-block | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Ar] 3d2 4s2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, ten, 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical backdrop | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase atSTP | solid | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 1941 K (1668 °C, 3034 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Humid point | 3560 K (3287 °C, 5949 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (nighr.t.) | 4.506 grand/cm3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
when liquid (atm.p.) | four.11 g/cm3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | fourteen.15 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 425 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Tooth oestrus capacity | 25.060 J/(mol·Thou) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vapor pressure level
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | −2, −i, 0,[3] +one, +2 , +3 , +four [4] (an amphoteric oxide) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | Pauling calibration: 1.54 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Diminutive radius | empirical: 147 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 160±8 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Natural occurrence | primordial | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal close-packed (hcp) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound sparse rod | 5090 m/south (atr.t.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | viii.6 µm/(one thousand⋅Thousand) (at 25 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | 21.9 W/(yard⋅Grand) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical resistivity | 420 nΩ⋅g (at 20 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | paramagnetic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molar magnetic susceptibility | +153.0×ten−6 cm3/mol (293 M)[v] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Young'south modulus | 116 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 44 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Majority modulus | 110 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Poisson ratio | 0.32 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 6.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vickers hardness | 830–3420 MPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brinell hardness | 716–2770 MPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS Number | 7440-32-6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
History | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Discovery | William Gregor (1791) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Starting time isolation | Jöns Jakob Berzelius (1825) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Named past | Martin Heinrich Klaproth (1795) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main isotopes of titanium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titanium is a chemic element with the symbol Ti and atomic number 22. Constitute in nature just as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, depression density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.
Titanium was discovered in Cornwall, Peachy Britain, by William Gregor in 1791 and was named by Martin Heinrich Klaproth afterwards the Titans of Greek mythology. The element occurs within a number of mineral deposits, principally rutile and ilmenite, which are widely distributed in the Globe's chaff and lithosphere; it is found in almost all living things, as well as bodies of water, rocks, and soils.[vi] The metal is extracted from its chief mineral ores by the Kroll[7] and Hunter processes. The well-nigh common compound, titanium dioxide, is a popular photocatalyst and is used in the manufacture of white pigments.[8] Other compounds include titanium tetrachloride (TiClfour), a component of smoke screens and catalysts; and titanium trichloride (TiClthree), which is used as a catalyst in the production of polypropylene.[half-dozen]
Titanium can be alloyed with atomic number 26, aluminium, vanadium, and molybdenum, amidst other elements, to produce stiff, lightweight alloys for aerospace (jet engines, missiles, and spacecraft), military, industrial processes (chemicals and petrochemicals, desalination plants, lurid, and newspaper), automotive, agronomics (farming), medical prostheses, orthopedic implants, dental and endodontic instruments and files, dental implants, sporting goods, jewelry, mobile phones, and other applications.[6]
The 2 most useful properties of the metal are corrosion resistance and forcefulness-to-density ratio, the highest of any metallic element.[9] In its unalloyed status, titanium is every bit strong equally some steels, but less dense.[10] There are two allotropic forms[xi] and five naturally occurring isotopes of this element, 46Ti through fiftyTi, with 48Ti being the most abundant (73.eight%).[12]
Characteristics
Physical backdrop
Equally a metal, titanium is recognized for its high strength-to-weight ratio.[xi] Information technology is a stiff metallic with low density that is quite ductile (especially in an oxygen-free environment),[6] lustrous, and metallic-white in color.[13] The relatively high melting bespeak (1,668 °C or 3,034 °F) makes it useful every bit a refractory metal. It is paramagnetic and has fairly low electric and thermal electrical conductivity compared to other metals.[6] Titanium is superconducting when cooled beneath its critical temperature of 0.49 G.[fourteen] [xv]
Commercially pure (99.2% pure) grades of titanium have ultimate tensile strength of nigh 434 MPa (63,000 psi), equal to that of common, low-form steel alloys, but are less dumbo. Titanium is 60% denser than aluminium, but more than twice as strong[ten] as the near commonly used 6061-T6 aluminium blend. Certain titanium alloys (eastward.g., Beta C) achieve tensile strengths of over ane,400 MPa (200,000 psi).[16] However, titanium loses strength when heated above 430 °C (806 °F).[17]
Titanium is non as hard as some grades of heat-treated steel; it is non-magnetic and a poor conductor of heat and electricity. Machining requires precautions, because the textile can gall unless sharp tools and proper cooling methods are used. Similar steel structures, those made from titanium have a fatigue limit that guarantees longevity in some applications.[13]
The metal is a dimorphic allotrope of an hexagonal α course that changes into a torso-centered cubic (lattice) β form at 882 °C (one,620 °F).[17] The specific estrus of the α course increases dramatically equally information technology is heated to this transition temperature but then falls and remains fairly constant for the β grade regardless of temperature.[17]
Chemical backdrop
Like aluminium and magnesium, the surface of titanium metallic and its alloys oxidize immediately upon exposure to air to grade a sparse non-porous passivation layer that protects the majority metallic from further oxidation or corrosion.[6] When information technology first forms, this protective layer is just 1–2 nm thick simply it continues to abound slowly, reaching a thickness of 25 nm in four years.[19] This layer gives titanium excellent resistance to corrosion, nigh equivalent to platinum.
Titanium is capable of withstanding set on past dilute sulfuric and hydrochloric acids, chloride solutions, and nearly organic acids.[7] However, titanium is corroded by full-bodied acids.[20] As indicated by its negative redox potential, titanium is thermodynamically a very reactive metal that burns in normal temper at lower temperatures than the melting indicate. Melting is possible only in an inert temper or in a vacuum. At 550 °C (1,022 °F), it combines with chlorine.[7] It as well reacts with the other halogens and absorbs hydrogen.[8]
Titanium readily reacts with oxygen at one,200 °C (2,190 °F) in air, and at 610 °C (one,130 °F) in pure oxygen, forming titanium dioxide.[11] Titanium is one of the few elements that burns in pure nitrogen gas, reacting at 800 °C (1,470 °F) to class titanium nitride, which causes embrittlement.[21] Considering of its high reactivity with oxygen, nitrogen, and many other gases, titanium that is evaporated from filaments is the basis for titanium sublimation pumps, in which titanium serves equally a scavenger for these gases by chemically bounden to them. Such pumps inexpensively produce extremely low pressures in ultra-loftier vacuum systems.
Occurrence
Titanium is the 9th-most arable chemical element in Earth's crust (0.63% by mass)[22] and the seventh-well-nigh abundant metallic. It is nowadays as oxides in well-nigh igneous rocks, in sediments derived from them, in living things, and natural bodies of water.[6] [7] Of the 801 types of igneous rocks analyzed by the United States Geological Survey, 784 contained titanium. Its proportion in soils is approximately 0.5 to ane.5%.[22]
Common titanium-containing minerals are anatase, brookite, ilmenite, perovskite, rutile, and titanite (sphene).[19] Akaogiite is an extremely rare mineral consisting of titanium dioxide. Of these minerals, only rutile and ilmenite accept economical importance, yet even they are difficult to find in high concentrations. Nigh 6.0 and 0.7 one thousand thousand tonnes of those minerals were mined in 2011, respectively.[23] Significant titanium-begetting ilmenite deposits exist in western Australia, Canada, China, Bharat, Mozambique, New Zealand, Norway, Sierra Leone, South Africa, and Ukraine.[xix] Near 210,000 tonnes of titanium metal sponge were produced in 2020, generally in China (110,000 t), Nippon (fifty,000 t), Russia (33,000 t) and Kazakhstan (15,000 t). Total reserves of anatase, ilmenite, and rutile are estimated to exceed 2 billion tonnes.[23]
Country | thousand tonnes | % of total |
---|---|---|
Mainland china | iii,830 | 33.1 |
Australia | one,513 | 13.one |
Mozambique | ane,070 | ix.3 |
Canada | 1,030 | 8.9 |
South Africa | 743 | six.4 |
Republic of kenya | 562 | 4.nine |
Bharat | 510 | 4.4 |
Senegal | 502 | 4.3 |
Ukraine | 492 | iv.3 |
World | 11,563 | 100 |
The concentration of titanium is near 4 picomolar in the body of water. At 100 °C, the concentration of titanium in water is estimated to be less than 10−seven M at pH 7. The identity of titanium species in aqueous solution remains unknown considering of its depression solubility and the lack of sensitive spectroscopic methods, although just the four+ oxidation state is stable in air. No evidence exists for a biological part, although rare organisms are known to accumulate high concentrations of titanium.[24]
Titanium is contained in meteorites, and information technology has been detected in the Sun and in M-type stars[seven] (the coolest type) with a surface temperature of iii,200 °C (five,790 °F).[25] Rocks brought back from the Moon during the Apollo 17 mission are composed of 12.1% TiOii.[7] Native titanium (pure metallic) is very rare.[26]
Isotopes
Naturally occurring titanium is equanimous of v stable isotopes: 46Ti, 47Ti, 48Ti, 49Ti, and 50Ti, with 48Ti beingness the well-nigh abundant (73.8% natural abundance). At to the lowest degree 21 radioisotopes accept been characterized, the almost stable of which are 44Ti with a half-life of 63 years; 45Ti, 184.8 minutes; 51Ti, 5.76 minutes; and 52Ti, i.7 minutes. All other radioactive isotopes have half-lives less than 33 seconds, with the majority less than one-half a second.[12]
The isotopes of titanium range in atomic weight from 39.002 u (39Ti) to 63.999 u (64Ti).[27] The primary disuse style for isotopes lighter than 46Ti is positron emission (with the exception of 44Ti which undergoes electron capture), leading to isotopes of scandium, and the principal mode for isotopes heavier than 50Ti is beta emission, leading to isotopes of vanadium.[12]
Titanium becomes radioactive upon bombardment with deuterons, emitting mainly positrons and hard gamma rays.[7]
Compounds
The +4 oxidation state dominates titanium chemistry,[28] but compounds in the +three oxidation country are also numerous.[29] Commonly, titanium adopts an octahedral coordination geometry in its complexes,[30] [31] but tetrahedral TiCl4 is a notable exception. Because of its high oxidation land, titanium(IV) compounds exhibit a loftier caste of covalent bonding.[28]
Oxides, sulfides, and alkoxides
The almost of import oxide is TiO2, which exists in three important polymorphs; anatase, brookite, and rutile. All three are white diamagnetic solids, although mineral samples can announced nighttime (see rutile). They adopt polymeric structures in which Ti is surrounded by vi oxide ligands that link to other Ti centers.[32]
The term titanates normally refers to titanium(Four) compounds, as represented past barium titanate (BaTiOiii). With a perovskite construction, this material exhibits piezoelectric properties and is used as a transducer in the interconversion of sound and electricity.[11] Many minerals are titanates, such as ilmenite (FeTiO3). Star sapphires and rubies get their asterism (star-forming shine) from the presence of titanium dioxide impurities.[19]
A multifariousness of reduced oxides (suboxides) of titanium are known, mainly reduced stoichiometries of titanium dioxide obtained by atmospheric plasma spraying. Ti3Ov, described as a Ti(IV)-Ti(Iii) species, is a purple semiconductor produced by reduction of TiOii with hydrogen at loftier temperatures,[33] and is used industrially when surfaces need to be vapor-coated with titanium dioxide: it evaporates as pure TiO, whereas TiO2 evaporates equally a mixture of oxides and deposits coatings with variable refractive alphabetize.[34] Also known is Ti2Oiii, with the corundum structure, and TiO, with the rock salt structure, although often nonstoichiometric.[35]
The alkoxides of titanium(4), prepared by treating TiCl4 with alcohols, are colorless compounds that convert to the dioxide on reaction with h2o. They are industrially useful for depositing solid TiOtwo via the sol-gel process. Titanium isopropoxide is used in the synthesis of chiral organic compounds via the Sharpless epoxidation.[36]
Titanium forms a multifariousness of sulfides, but only TiS2 has attracted significant interest. It adopts a layered structure and was used as a cathode in the development of lithium batteries. Because Ti(IV) is a "hard cation", the sulfides of titanium are unstable and tend to hydrolyze to the oxide with release of hydrogen sulfide.[37]
Nitrides and carbides
Titanium nitride (TiN) is a refractory solid exhibiting extreme hardness, thermal/electrical conductivity, and a high melting indicate.[38] TiN has a hardness equivalent to sapphire and carborundum (9.0 on the Mohs calibration),[39] and is often used to coat cutting tools, such as drill bits.[twoscore] Information technology is besides used as a gilt-colored decorative end and equally a bulwark layer in semiconductor fabrication.[41] Titanium carbide (TiC), which is too very difficult, is found in cutting tools and coatings.[42]
Halides
Titanium(3) compounds are characteristically violet, illustrated by this aqueous solution of titanium trichloride.
Titanium tetrachloride (titanium(IV) chloride, TiClfour [43]) is a colorless volatile liquid (commercial samples are yellowish) that, in air, hydrolyzes with spectacular emission of white clouds. Via the Kroll process, TiCliv is used in the conversion of titanium ores to titanium metallic. Titanium tetrachloride is too used to make titanium dioxide, e.k., for apply in white paint.[44] It is widely used in organic chemistry as a Lewis acid, for instance in the Mukaiyama aldol condensation.[45] In the van Arkel–de Boer procedure, titanium tetraiodide (TiIiv) is generated in the production of high purity titanium metal.[46]
Titanium(Iii) and titanium(II) also form stable chlorides. A notable example is titanium(3) chloride (TiCl3), which is used as a goad for production of polyolefins (see Ziegler–Natta catalyst) and a reducing amanuensis in organic chemistry.[47]
Organometallic complexes
Attributable to the important part of titanium compounds equally polymerization catalyst, compounds with Ti-C bonds accept been intensively studied. The well-nigh mutual organotitanium circuitous is titanocene dichloride ((C5Hfive)iiTiCl2). Related compounds include Tebbe'southward reagent and Petasis reagent. Titanium forms carbonyl complexes, e.g. (C5H5)2Ti(CO)2.[48]
Anticancer therapy studies
Following the success of platinum-based chemotherapy, titanium(IV) complexes were among the first non-platinum compounds to be tested for cancer treatment. The advantage of titanium compounds lies in their high efficacy and low toxicity in vivo.[49] In biological environments, hydrolysis leads to the safe and inert titanium dioxide. Despite these advantages the offset candidate compounds failed clinical trials due to insufficient efficacy to toxicity ratios and formulation complications.[49] Further development resulted in the cosmos of potentially constructive, selective, and stable titanium-based drugs.[49]
History
Titanium was discovered in 1791 by the clergyman and amateur geologist William Gregor as an inclusion of a mineral in Cornwall, Britain.[50] Gregor recognized the presence of a new element in ilmenite[8] when he found blackness sand by a stream and noticed the sand was attracted by a magnet.[l] Analyzing the sand, he determined the presence of 2 metal oxides: fe oxide (explaining the attraction to the magnet) and 45.25% of a white metallic oxide he could not place.[22] Realizing that the unidentified oxide contained a metal that did not match any known chemical element, Gregor reported his findings to the Royal Geological Guild of Cornwall and in the German science journal Crell'south Annalen.[50] [51] [52]
Around the aforementioned time, Franz-Joseph Müller von Reichenstein produced a like substance, merely could non place it.[8] The oxide was independently rediscovered in 1795 by Prussian chemist Martin Heinrich Klaproth in rutile from Boinik (the German language name of Bajmócska), a village in Hungary (now Bojničky in Slovakia).[50] [53] Klaproth found that it independent a new element and named it for the Titans of Greek mythology.[25] Later on hearing about Gregor'due south earlier discovery, he obtained a sample of manaccanite and confirmed that it independent titanium.[54]
The currently known processes for extracting titanium from its various ores are laborious and costly; it is not possible to reduce the ore by heating with carbon (as in fe smelting) considering titanium combines with the carbon to produce titanium carbide.[50] Pure metallic titanium (99.ix%) was first prepared in 1910 by Matthew A. Hunter at Rensselaer Polytechnic Institute by heating TiCliv with sodium at 700–800 °C under great pressure[55] in a batch procedure known every bit the Hunter process.[7] Titanium metal was not used outside the laboratory until 1932 when William Justin Kroll produced it past reducing titanium tetrachloride (TiCl4) with calcium.[56] Eight years after he refined this process with magnesium and with sodium in what became known equally the Kroll process.[56] Although inquiry continues to seek cheaper and more efficient routes, such as the FFC Cambridge process, the Kroll process is still predominantly used for commercial production.[7] [8]
Titanium of very loftier purity was made in small-scale quantities when Anton Eduard van Arkel and Jan Hendrik de Boer discovered the iodide procedure in 1925, by reacting with iodine and decomposing the formed vapors over a hot filament to pure metal.[57]
In the 1950s and 1960s, the Soviet Union pioneered the use of titanium in military and submarine applications[55] (Alfa class and Mike form)[58] as part of programs related to the Common cold War.[59] Starting in the early 1950s, titanium came into use extensively in armed forces aviation, particularly in high-performance jets, starting with shipping such every bit the F-100 Super Sabre and Lockheed A-12 and SR-71.[60]
Throughout the Cold War period, titanium was considered a strategic textile by the U.S. government, and a large stockpile of titanium sponge (a porous form of the pure metallic) was maintained past the Defense National Stockpile Eye, until the stockpile was dispersed in the 2000s.[61] As of 2021, the 4 leading producers of titanium sponge were China (52%), Nippon (24%), Russia (xvi%) and Kazakhstan (7%).[23]
Production
Titanium (mineral concentrate)
Basic titanium products: plate, tube, rods, and powder
The processing of titanium metallic occurs in four major steps: reduction of titanium ore into "sponge", a porous form; melting of sponge, or sponge plus a master alloy to class an ingot; principal fabrication, where an ingot is converted into general factory products such as billet, bar, plate, sail, strip, and tube; and secondary fabrication of finished shapes from mill products.[62]
Considering it cannot be readily produced by reduction of titanium dioxide,[13] titanium metal is obtained past reduction of TiCl4 with magnesium metallic in the Kroll process. The complexity of this batch production in the Kroll process explains the relatively high market value of titanium,[63] despite the Kroll process being less expensive than the Hunter process.[55] To produce the TiCl4 required by the Kroll process, the dioxide is subjected to carbothermic reduction in the presence of chlorine. In this process, the chlorine gas is passed over a scarlet-hot mixture of rutile or ilmenite in the presence of carbon. After extensive purification by partial distillation, the TiClfour is reduced with 800 °C (1,470 °F) molten magnesium in an argon temper.[11] Titanium metallic can exist further purified by the van Arkel–de Boer procedure, which involves thermal decomposition of titanium tetraiodide.
Common titanium alloys are fabricated by reduction. For example, cuprotitanium (rutile with copper added is reduced), ferrocarbon titanium (ilmenite reduced with coke in an electric furnace), and manganotitanium (rutile with manganese or manganese oxides) are reduced.[64]
About fifty grades of titanium alloys are designed and currently used, although merely a couple of dozen are readily available commercially.[65] The ASTM International recognizes 31 grades of titanium metal and alloys, of which grades one through four are commercially pure (unalloyed). Those iv vary in tensile strength as a office of oxygen content, with grade 1 being the most ductile (lowest tensile strength with an oxygen content of 0.18%), and form 4 the least ductile (highest tensile strength with an oxygen content of 0.twoscore%).[19] The remaining grades are alloys, each designed for specific properties of ductility, strength, hardness, electrical resistivity, creep resistance, specific corrosion resistance, and combinations thereof.[66]
In addition to the ASTM specifications, titanium alloys are also produced to meet aerospace and military specifications (SAE-AMS, MIL-T), ISO standards, and country-specific specifications, as well as proprietary finish-user specifications for aerospace, military, medical, and industrial applications.[67]
Titanium pulverization is manufactured using a flow production procedure known equally the Armstrong process[68] that is like to the batch production Hunter procedure. A stream of titanium tetrachloride gas is added to a stream of molten sodium; the products (sodium chloride table salt and titanium particles) is filtered from the extra sodium. Titanium is then separated from the salt by h2o washing. Both sodium and chlorine are recycled to produce and process more titanium tetrachloride.[69]
Fabrication
All welding of titanium must be done in an inert atmosphere of argon or helium to shield information technology from contamination with atmospheric gases (oxygen, nitrogen, and hydrogen).[17] Contamination causes a variety of conditions, such as embrittlement, which reduce the integrity of the assembly welds and atomic number 82 to articulation failure.[70]
Titanium is very difficult to solder directly, and hence a solderable metal or alloy such as steel is coated on titanium prior to soldering.[71] Titanium metal can be machined with the same equipment and the same processes as stainless steel.[17]
Forming and forging
Commercially pure apartment production (canvas, plate) tin exist formed readily, merely processing must take into account of the tendency of the metal to springback. This is especially true of certain high-strength alloys.[72] [73] Exposure to the oxygen in air at the elevated temperatures used in forging results in germination of an brittle oxygen-rich metallic surface layer called "blastoff example" that worsens the fatigue properties, and then it must be removed past milling, etching, or electrochemical treatment.[74]
Applications
A titanium cylinder of "grade two" quality
Titanium is used in steel as an alloying element (ferro-titanium) to reduce grain size and as a deoxidizer, and in stainless steel to reduce carbon content.[half dozen] Titanium is oftentimes alloyed with aluminium (to refine grain size), vanadium, copper (to harden), iron, manganese, molybdenum, and other metals.[75] Titanium mill products (sheet, plate, bar, wire, forgings, castings) find application in industrial, aerospace, recreational, and emerging markets. Powdered titanium is used in pyrotechnics equally a source of bright-burning particles.[76]
Pigments, additives, and coatings
Nearly 95% of all titanium ore is destined for refinement into titanium dioxide (TiO
ii ), an intensely white permanent pigment used in paints, paper, toothpaste, and plastics.[23] It is also used in cement, in gemstones, equally an optical opacifier in paper,[77] and a strengthening agent in graphite composite fishing rods and golf game clubs.[78]
TiO
2 pigment is chemically inert, resists fading in sunlight, and is very opaque: it imparts a pure and brilliant white color to the brown or grey chemicals that form the majority of household plastics.[eight] In nature, this compound is plant in the minerals anatase, brookite, and rutile.[six] Paint fabricated with titanium dioxide does well in severe temperatures and marine environments.[8] Pure titanium dioxide has a very loftier index of refraction and an optical dispersion higher than diamond.[7] In addition to existence a very of import pigment, titanium dioxide is besides used in sunscreens.[thirteen]
Aerospace and marine
Because titanium alloys have high tensile force to density ratio,[11] high corrosion resistance,[7] fatigue resistance, loftier cleft resistance,[79] and power to withstand moderately high temperatures without creeping, they are used in aircraft, armor plating, naval ships, spacecraft, and missiles.[7] [eight] For these applications, titanium is assimilated with aluminium, zirconium, nickel,[80] vanadium, and other elements to manufacture a variety of components including critical structural parts, burn down walls, landing gear, exhaust ducts (helicopters), and hydraulic systems. In fact, about ii thirds of all titanium metal produced is used in aircraft engines and frames.[81] The titanium 6AL-4V alloy accounts for almost 50% of all alloys used in aircraft applications.[82]
The Lockheed A-12 and its evolution the SR-71 "Blackbird" were ii of the start aircraft frames where titanium was used, paving the way for much wider use in modern military and commercial aircraft. A large amount of titanium manufacturing plant products are used in the production of many aircraft, such as (following values are corporeality of raw manufactory products used ... only a fraction of this ends upward in the finished shipping): 116 metric tons are used in the Boeing 787, 77 in the Airbus A380, 59 in the Boeing 777, 45 in the Boeing 747, 18 in the Boeing 737, 32 in the Airbus A340, eighteen in the Airbus A330, and 12 in the Airbus A320.[83] In aero engine applications, titanium is used for rotors, compressor blades, hydraulic organization components, and nacelles.[ citation needed ] An early employ in jet engines was for the Orenda Iroquois in the 1950s.[ better source needed ] [84]
Because titanium is resistant to corrosion by body of water water, information technology is used to brand propeller shafts, rigging, and heat exchangers in desalination plants;[7] heater-chillers for salt water aquariums, fishing line and leader, and divers' knives. Titanium is used in the housings and components of ocean-deployed surveillance and monitoring devices for science and the military. The former Soviet Spousal relationship developed techniques for making submarines with hulls of titanium alloys[85] forging titanium in huge vacuum tubes.[80]
Titanium is used in the walls of the Juno spacecraft's vault to shield on-lath electronics.[86]
Industrial
Welded titanium pipe and process equipment (heat exchangers, tanks, process vessels, valves) are used in the chemic and petrochemical industries primarily for corrosion resistance. Specific alloys are used in oil and gas downhole applications and nickel hydrometallurgy for their high strength (e. m.: titanium beta C alloy), corrosion resistance, or both. The pulp and paper industry uses titanium in process equipment exposed to corrosive media, such as sodium hypochlorite or wet chlorine gas (in the bleachery).[87] Other applications include ultrasonic welding, moving ridge soldering,[88] and sputtering targets.[89]
Titanium tetrachloride (TiCl4), a colorless liquid, is important as an intermediate in the process of making TiOii and is also used to produce the Ziegler–Natta catalyst. Titanium tetrachloride is as well used to iridize drinking glass and, because information technology fumes strongly in moist air, it is used to brand smoke screens.[13]
Consumer and architectural
Titanium metal is used in automotive applications, particularly in automobile and motorbike racing where low weight and high strength and rigidity are critical.[90] The metallic is generally too expensive for the general consumer market, though some tardily model Corvettes accept been manufactured with titanium exhausts,[91] and a Corvette Z06's LT4 supercharged engine uses lightweight, solid titanium intake valves for greater strength and resistance to heat.[92]
Titanium is used in many sporting goods: tennis rackets, golf clubs, lacrosse stick shafts; cricket, hockey, lacrosse, and football helmet grills, and wheel frames and components. Although non a mainstream material for cycle production, titanium bikes take been used past racing teams and adventure cyclists.[93]
Titanium alloys are used in spectacle frames that are rather expensive but highly durable, long lasting, calorie-free weight, and cause no skin allergies. Many backpackers utilize titanium equipment, including cookware, eating utensils, lanterns, and tent stakes. Though slightly more than expensive than traditional steel or aluminium alternatives, titanium products can be significantly lighter without compromising strength. Titanium horseshoes are preferred to steel by farriers because they are lighter and more durable.[94]
Titanium has occasionally been used in architecture. The 42.5 m (139 ft) Monument to Yuri Gagarin, the starting time man to travel in space ( 55°42′29.7″N 37°34′57.ii″E / 55.708250°Northward 37.582556°E / 55.708250; 37.582556 ), also as the 110 m (360 ft) Monument to the Conquerors of Space on top of the Cosmonaut Museum in Moscow are fabricated of titanium for the metal'due south attractive color and association with rocketry.[95] [96] The Guggenheim Museum Bilbao and the Cerritos Millennium Library were the first buildings in Europe and North America, respectively, to exist sheathed in titanium panels.[81] Titanium sheathing was used in the Frederic C. Hamilton Edifice in Denver, Colorado.[97]
Because of titanium's superior strength and light weight relative to other metals (steel, stainless steel, and aluminium), and because of contempo advances in metalworking techniques, its utilise has go more than widespread in the industry of firearms. Main uses include pistol frames and revolver cylinders. For the same reasons, information technology is used in the trunk of laptop computers (for example, in Apple tree's PowerBook line).[98] [99]
Some upmarket lightweight and corrosion-resistant tools, such as shovels, knife handles and flashlights, are made of titanium or titanium alloys.[99]
Jewelry
Relation between voltage and color for anodized titanium
Because of its durability, titanium has get more than popular for designer jewelry (peculiarly, titanium rings).[94] Its inertness makes information technology a good choice for those with allergies or those who will be wearing the jewelry in environments such every bit swimming pools. Titanium is also alloyed with gilded to produce an alloy that can be marketed every bit 24-karat gold because the 1% of alloyed Ti is insufficient to require a lesser mark. The resulting alloy is roughly the hardness of 14-karat gold and is more durable than pure 24-karat gold.[100]
Titanium's durability, light weight, and dent and corrosion resistance brand it useful for lookout man cases.[94] Some artists work with titanium to produce sculptures, decorative objects and furniture.[101]
Titanium may be anodized to vary the thickness of the surface oxide layer, causing optical interference fringes and a multifariousness of bright colors.[102] With this coloration and chemic inertness, titanium is a pop metal for body piercing.[103]
Titanium has a pocket-size use in dedicated non-circulating coins and medals. In 1999, Gibraltar released the globe's first titanium coin for the millennium celebration.[104] The Golden Coast Titans, an Australian rugby league team, award a medal of pure titanium to their histrion of the year.[105]
Medical
Because titanium is biocompatible (non-toxic and not rejected by the trunk), information technology has many medical uses, including surgical implements and implants, such as hip assurance and sockets (joint replacement) and dental implants that can stay in identify for upwards to 20 years.[fifty] The titanium is oft alloyed with about four% aluminium or six% Al and 4% vanadium.[106]
Medical screws and plate used to repair wrist fractures. Scale is in centimeters.
Titanium has the inherent ability to osseointegrate, enabling apply in dental implants that tin can last for over 30 years. This property is also useful for orthopedic implant applications.[50] These benefit from titanium'southward lower modulus of elasticity (Immature's modulus) to more closely match that of the bone that such devices are intended to repair. Equally a result, skeletal loads are more evenly shared between bone and implant, leading to a lower incidence of bone degradation due to stress shielding and periprosthetic os fractures, which occur at the boundaries of orthopedic implants. However, titanium alloys' stiffness is still more than twice that of bone, so adjacent os bears a greatly reduced load and may deteriorate.[107] [108]
Because titanium is not-ferromagnetic, patients with titanium implants tin be safely examined with magnetic resonance imaging (convenient for long-term implants). Preparing titanium for implantation in the body involves subjecting it to a high-temperature plasma arc which removes the surface atoms, exposing fresh titanium that is instantly oxidized.[l]
Mod advancements in additive manufacturing techniques have increased potential for titanium utilise in orthopedic implant applications.[109] Circuitous implant scaffold designs tin exist 3D-printed using titanium alloys, which allows for more patient-specific applications and increased implant osseointegration.[110]
Titanium is used for the surgical instruments used in image-guided surgery, as well as wheelchairs, crutches, and any other products where loftier strength and low weight are desirable.[111]
Titanium dioxide nanoparticles are widely used in electronics and the delivery of pharmaceuticals and cosmetics.[112]
Nuclear waste storage
Because of its corrosion resistance, containers fabricated of titanium have been studied for the long-term storage of radioactive waste. Containers lasting more than than 100,000 years are thought possible with manufacturing conditions that minimize material defects.[113] A titanium "drip shield" could as well exist installed over containers of other types to enhance their longevity.[114]
Precautions
Titanium is non-toxic even in large doses and does not play any natural function inside the human body.[25] An estimated quantity of 0.eight milligrams of titanium is ingested by humans each day, but near passes through without being absorbed in the tissues.[25] It does, however, sometimes bio-accumulate in tissues that comprise silica. 1 study indicates a possible connectedness between titanium and yellowish nail syndrome.[115]
As a pulverisation or in the form of metal shavings, titanium metal poses a significant burn take chances and, when heated in air, an explosion hazard.[116] H2o and carbon dioxide are ineffective for extinguishing a titanium fire; Class D dry powder agents must exist used instead.[8]
When used in the product or handling of chlorine, titanium should not be exposed to dry chlorine gas considering it may result in a titanium–chlorine fire.[117]
Titanium can catch fire when a fresh, non-oxidized surface comes in contact with liquid oxygen.[118]
Function in plants
Nettles contain up to fourscore parts per meg of titanium.[25]
An unknown mechanism in plants may utilise titanium to stimulate the product of carbohydrates and encourage growth. This may explain why most plants contain well-nigh i function per million (ppm) of titanium, food plants have about ii ppm, and horsetail and nettle incorporate upwards to eighty ppm.[25]
See also
- List of countries by titanium production
- Suboxide
- Titanium in Africa
- Titanium in zircon geothermometry
- Titanium Human being
- VSMPO-AVISMA
References
- ^ "titanium". Oxford Dictionaries UK English Dictionary. Oxford Academy Printing. n.d. Retrieved 28 March 2017.
- ^ "Standard Atomic Weights: Titanium". CIAAW. 1993.
- ^ Jilek, Robert East.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G., Jr.; Ellis, John Due east. (2007). "Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6: [Ti(CO)4(SouthwardiiCNR2)]−". Chem. Commun. (25): 2639–2641. doi:x.1039/B700808B. PMID 17579764.
- ^ Andersson, N.; et al. (2003). "Emission spectra of TiH and TiD most 938 nm" (PDF). J. Chem. Phys. 118 (8): 10543. Bibcode:2003JChPh.118.3543A. doi:ten.1063/1.1539848.
- ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Safety Visitor Publishing. pp. E110. ISBN0-8493-0464-four.
- ^ a b c d e f g h i "Titanium". Encyclopædia Britannica. 2006. Retrieved 19 Jan 2022.
- ^ a b c d e f g h i j k 50 m Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN0-8493-0486-5.
- ^ a b c d e f g h i Krebs, Robert E. (2006). The History and Use of Our Globe's Chemical Elements: A Reference Guide (2nd ed.). Westport, CT: Greenwood Press. ISBN978-0-313-33438-2.
- ^ Donachie 1988, p. 11
- ^ a b Barksdale 1968, p. 738
- ^ a b c d e f "Titanium". Columbia Encyclopedia (6th ed.). New York: Columbia University Press. 2000–2006. ISBN978-0-7876-5015-5.
- ^ a b c Barbalace, Kenneth 50. (2006). "Periodic Table of Elements: Ti – Titanium". Retrieved 26 December 2006.
- ^ a b c d eastward Stwertka, Albert (1998). "Titanium". Guide to the Elements (Revised ed.). Oxford Academy Press. pp. 81–82. ISBN978-0-19-508083-4.
- ^ Steele, One thousand. C.; Hein, R. A. (1953). "Superconductivity of Titanium". Phys. Rev. 92 (2): 243–247. Bibcode:1953PhRv...92..243S. doi:10.1103/PhysRev.92.243.
- ^ Thiemann, M.; et al. (2018). "Complete electrodynamics of a BCS superconductor with μeV energy scales: Microwave spectroscopy on titanium at mK temperatures". Phys. Rev. B. 97 (21): 214516. arXiv:1803.02736. Bibcode:2018PhRvB..97u4516T. doi:10.1103/PhysRevB.97.214516. S2CID 54891002.
- ^ Donachie 1988, Appendix J, Table J.2
- ^ a b c d e Barksdale 1968, p. 734
- ^ Puigdomenech, Ignasi (2004) Hydra/Medusa Chemical Equilibrium Database and Plotting Software, KTH Royal Institute of Technology.
- ^ a b c d e Emsley 2001, p. 453
- ^ Casillas, N.; Charlebois, S.; Smyrl, W. H.; White, H. South. (1994). "Pitting Corrosion of Titanium" (PDF). J. Electrochem. Soc. 141 (3): 636–642. Bibcode:1994JElS..141..636C. doi:10.1149/one.2054783. Archived (PDF) from the original on 27 August 2020.
- ^ Forrest, A. 50. (1981). "Effects of Metal Chemical science on Beliefs of Titanium in Industrial Applications". Industrial Applications of Titanium and Zirconium. p. 112.
- ^ a b c Barksdale 1968, p. 732
- ^ a b c d eastward U.s. Geological Survey. "USGS Minerals Information: Titanium".
- ^ Buettner, G. M.; Valentine, A. M. (2012). "Bioinorganic Chemistry of Titanium". Chemical Reviews. 112 (iii): 1863–81. doi:10.1021/cr1002886. PMID 22074443.
- ^ a b c d due east f Emsley 2001, p. 451
- ^ Titanium. Mindat
- ^ Wang, M.; Audi, G.; Kondev, F. Yard.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
- ^ a b Greenwood & Earnshaw 1997, p. 958
- ^ Greenwood & Earnshaw 1997, p. 970
- ^ Greenwood & Earnshaw 1997, p. 960
- ^ Greenwood & Earnshaw 1997, p. 967
- ^ Greenwood & Earnshaw 1997, p. 961
- ^ Liu, Gang; Huang, Wan-Xia; Yi, Yong (26 June 2013). "Grooming and Optical Storage Properties of λTithreeO5 Pulverization". Periodical of Inorganic Materials. 28 (iv): 425–430. doi:10.3724/SP.J.1077.2013.12309.
- ^ Bonardi, Antonio; Pühlhofer, Gerd; Hermanutz, Stephan; Santangelo, Andrea (2014). "A new solution for mirror blanket in $γ$-ray Cherenkov Astronomy". Experimental Astronomy. 38 (1–2): 1–9. arXiv:1406.0622. Bibcode:2014ExA....38....1B. doi:x.1007/s10686-014-9398-ten. S2CID 119213226.
- ^ Greenwood & Earnshaw 1997, p. 962.
- ^ Ramón, Diego J.; Yus, Miguel (2006). "In the Arena of Enantioselective Synthesis, Titanium Complexes Habiliment the Laurel Wreath". Chem. Rev. 106 (six): 2126–2308. doi:10.1021/cr040698p. PMID 16771446.
- ^ McKelvy, M. J.; Glaunsinger, W. S. (1995). "Titanium Disulfide". Inorganic Syntheses. Inorganic Syntheses. Vol. 30. pp. 28–32. doi:x.1002/9780470132616.ch7. ISBN9780470132616.
- ^ Saha, Naresh (1992). "Titanium nitride oxidation chemical science: An ten-ray photoelectron spectroscopy study". Journal of Applied Physics. 72 (7): 3072–3079. Bibcode:1992JAP....72.3072S. doi:x.1063/i.351465.
- ^ Schubert, East.F. "The hardness scale introduced past Friederich Mohs" (PDF). Archived (PDF) from the original on 3 June 2010.
- ^ Truini, Joseph (May 1988). "Drill Bits". Popular Mechanics. 165 (five): 91. ISSN 0032-4558.
- ^ Baliga, B. Jayant (2005). Silicon carbide power devices. Earth Scientific. p. 91. ISBN978-981-256-605-8.
- ^ "Titanium carbide product information". H. C. Starck. Archived from the original on 22 September 2017. Retrieved 16 November 2015.
- ^ Seong, S.; et al. (2009). Titanium: industrial base of operations, price trends, and technology initiatives. Rand Corporation. p. ten. ISBN978-0-8330-4575-one.
- ^ Johnson, Richard W. (1998). The Handbook of Fluid Dynamics. Springer. pp. 38–21. ISBN978-three-540-64612-9.
- ^ Coates, Robert Yard.; Paquette, Leo A. (2000). Handbook of Reagents for Organic Synthesis. John Wiley and Sons. p. 93. ISBN978-0-470-85625-iii.
- ^ Greenwood & Earnshaw 1997, p. 965
- ^ Gundersen, Lise-Lotte; Rise, Frode; Undheim, Kjell; Méndez Andino, José (2007). "Titanium(Iii) Chloride". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rt120.pub2. ISBN978-0471936237.
- ^ Hartwig, J. F. (2010) Organotransition Metal Chemistry, from Bonding to Catalysis. University Science Books: New York. ISBN 189138953X
- ^ a b c Tshuva, Edit Y.; Miller, Maya (2018). "Chapter viii. Coordination Complexes of Titanium(Four) for Anticancer Therapy". In Sigel, Astrid; Sigel, Helmut; Freisinger, Eva; Sigel, Roland G. O. (eds.). Metallo-Drugs: Development and Activity of Anticancer Agents. Metal Ions in Life Sciences. Vol. 18. Berlin: de Gruyter GmbH. pp. 219–250. doi:10.1515/9783110470734-014. ISBN9783110470734. PMID 29394027.
- ^ a b c d due east f g h Emsley 2001, p. 452
- ^ Gregor, William (1791) "Beobachtungen und Versuche über den Menakanit, einen in Cornwall gefundenen magnetischen Sand" (Observations and experiments regarding menaccanite [i.eastward., ilmenite], a magnetic sand establish in Cornwall), Chemische Annalen …, i, pp. xl–54, 103–119.
- ^ Gregor, William (1791) "Sur le menakanite, espèce de sable attirable par l'aimant, trouvé dans la province de Cornouilles" (On menaccanite, a species of magnetic sand, plant in the county of Cornwall), Observations et Mémoires sur la Physique, 39: 72–78, 152–160.
- ^ Klaproth, Martin Heinrich (1795) "Chemische Untersuchung des sogenannten hungarischen rothen Schörls" (Chemical investigation of the so-called Hungarian red tourmaline [rutile]) in: Beiträge zur chemischen Kenntniss der Mineralkörper (Contributions to the chemic cognition of mineral substances), vol. 1, (Berlin, Frg): Heinrich Baronial Rottmann, 233–244. From page 244: "Diesem zufolge volition ich den Namen für die gegenwärtige metallische Substanz, gleichergestalt wie bei dem Uranium geschehen, aus der Mythologie, und zwar von den Ursöhnen der Erde, den Titanen, entlehnen, und benenne likewise diese neue Metallgeschlecht: Titanium; … " (By virtue of this I volition derive the name for the present metallic substance — as happened similarly in the case of uranium — from mythology, namely from the first sons of the Earth, the Titans, and thus [I] proper noun this new species of metal: "titanium"; … )
- ^ Suisman Titanium Corporation (1995). Twenty-v Years of Titanium News. Pennsylvania State Academy. p. 37.
- ^ a b c Roza 2008, p. 9
- ^ a b Greenwood & Earnshaw 1997, p. 955
- ^ van Arkel, A. E.; de Boer, J. H. (1925). "Training of pure titanium, zirconium, hafnium, and thorium metal". Zeitschrift für anorganische und allgemeine Chemie. 148: 345–50. doi:x.1002/zaac.19251480133.
- ^ Yanko, Eugene (2006). "Submarines: general information". Omsk VTTV Arms Exhibition and Military Parade JSC. Archived from the original on 6 Apr 2016. Retrieved 2 February 2015.
- ^ Stainless Steel World (July–August 2001). "VSMPO Stronger Than Ever" (PDF). KCI Publishing B.V. pp. 16–nineteen. Archived from the original (PDF) on 5 Oct 2006. Retrieved ii January 2007.
- ^ Jasper, Adam, ed. (2020). Architecture and Anthropology. Taylor & Francis. p. 42. ISBN9781351106276.
- ^ Defense force National Stockpile Middle (2008). Strategic and Critical Materials Study to the Congress. Operations under the Strategic and Critical Materials Stock Piling Act during the Period October 2007 through September 2008 (PDF). U.s.a. Department of Defense. p. 3304. Archived from the original (PDF) on 11 Feb 2010.
- ^ Donachie 1988, Ch. four
- ^ Barksdale 1968, p. 733
- ^ "Titanium". Microsoft Encarta. 2005. Archived from the original on 27 October 2006. Retrieved 29 December 2006.
- ^ Donachie 1988, p. 16, Appendix J
- ^ ASTM International (2006). Annual Book of ASTM Standards (Volume 02.04: Non-ferrous Metals). Westward Conshohocken, PA: ASTM International. section 2. ISBN978-0-8031-4086-8. ASTM International (1998). Annual Book of ASTM Standards (Volume 13.01: Medical Devices; Emergency Medical Services). Due west Conshohocken, PA: ASTM International. sections 2 & xiii. ISBN978-0-8031-2452-3.
- ^ Donachie 1988, pp. thirteen–sixteen, Appendices H and J
- ^ Roza 2008, p. 25
- ^ "Titanium". The Essential Chemical Industry online. York, UK: CIEC Promoting Science at the University of York. 15 January 2015.
- ^ Engel, Abraham L.; Huber, R. W.; Lane, I. R. (1955). Arc-welding Titanium. U.South. Section of the Interior, Bureau of Mines.
- ^ Lewis, W. J.; Faulkner, G. E.; Rieppel, P. J. (1956). Report on Brazing and Soldering of Titanium. Titanium Metallurgical Laboratory, Battelle Memorial Institute.
- ^ AWS G2.4/G2.4M:2007 Guide for the Fusion Welding of Titanium and Titanium Alloys. Miami: American Welding Society. 2006. Archived from the original on 10 Dec 2010.
{{cite book}}
: CS1 maint: bot: original URL status unknown (link) - ^ Titanium Metals Corporation (1997). Titanium design and fabrication handbook for industrial applications. Dallas: Titanium Metals Corporation. Archived from the original on ix February 2009.
{{cite volume}}
: CS1 maint: bot: original URL condition unknown (link) - ^ Chen, George Z.; Fray, Derek J.; Farthing, Tom W. (2001). "Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride". Metall. Mater. Trans. B. 32 (6): 1041. doi:10.1007/s11663-001-0093-viii. S2CID 95616531.
- ^ Hampel, Clifford A. (1968). The Encyclopedia of the Chemical Elements. Van Nostrand Reinhold. p. 738. ISBN978-0-442-15598-eight.
- ^ Mocella, Chris; Conkling, John A. (2019). Chemistry of Pyrotechnics. CRC Press. p. 86. ISBN9781351626569.
- ^ Smook, Gary A. (2002). Handbook for Pulp & Paper Technologists (third ed.). Angus Wilde Publications. p. 223. ISBN978-0-9694628-5-9.
- ^ University of Leeds (13 February 2008). "Cheap, Environmentally Friendly Extraction Method For Titanium Dioxide Adult". ScienceDaily . Retrieved 12 November 2021.
- ^ Moiseyev, Valentin North. (2006). Titanium Alloys: Russian Aircraft and Aerospace Applications. Taylor and Francis, LLC. p. 196. ISBN978-0-8493-3273-9.
- ^ a b Kramer, Andrew E. (5 July 2013). "Titanium Fills Vital Office for Boeing and Russia". The New York Times . Retrieved 6 July 2013.
- ^ a b Emsley 2001, p. 454
- ^ Donachie 1988, p. 13
- ^ Froes, F. H., ed. (2015). Titanium Physical Metallurgy, Processing, and Applications. ASM International. p. seven. ISBN9781627080804.
- ^ "Iroquois". Flight Annal. 1957. p. 412. Archived from the original on 13 December 2009.
- ^ "GlobalSecurity". GlobalSecurity.org. April 2006. Retrieved 23 April 2008.
- ^ Scharf, Caleb A. (17 June 2016) The Jupiter Vault. Scientific American.
- ^ Donachie 1988, pp. xi–16
- ^ Kleefisch, E.W., ed. (1981). Industrial Application of Titanium and Zirconium. West Conshohocken, PA: ASTM International. ISBN978-0-8031-0745-eight.
- ^ Bunshah, Rointan F., ed. (2001). "Ch. viii". Handbook of Hard Coatings. Norwich, NY: William Andrew Inc. ISBN978-0-8155-1438-one.
- ^ Bong, Tom; et al. (2001). Heat Treating. Proceedings of the 20th Conference, 9–12 October 2000. ASM International. p. 141. ISBN978-0-87170-727-7.
- ^ National Corvette Museum (2006). "Titanium Exhausts". Archived from the original on 3 January 2013. Retrieved 26 Dec 2006.
- ^ Compact Powerhouse: Inside Corvette Z06'due south LT4 Engine 650-hp supercharged vi.2L 5-8 makes earth-class ability in more efficient bundle. media.gm.com. twenty August 2014
- ^ Davis, Joseph R. (1998). Metals Handbook . ASM International. p. 584. ISBN978-0-87170-654-vi.
- ^ a b c Donachie 1988, pp. 11, 255
- ^ Mike Gruntman (2004). Blazing the Trail: The Early on History of Spacecraft and Rocketry. Reston, VA: American Constitute of Aeronautics and Astronautics. p. 457. ISBN978-1-56347-705-8.
- ^ Lütjering, Gerd; Williams, James Instance (12 June 2007). "Advent Related Applications". Titanium. ISBN978-three-540-71397-5.
- ^ "Denver Art Museum, Frederic C. Hamilton Building". SPG Media. 2006. Retrieved 26 Dec 2006.
- ^ "Apple PowerBook G4 400 (Original – Ti) Specs". everymac.com . Retrieved 8 August 2009.
- ^ a b Qian, Ma; Niinomi, Mitsuo (2019). Real-Earth Use of Titanium. Elsevier Scientific discipline. pp. 7–8. ISBN9780128158203.
- ^ Gafner, G. (1989). "The development of 990 Gilt-Titanium: its Production, use and Properties" (PDF). Gold Bulletin. 22 (4): 112–122. doi:x.1007/BF03214709. S2CID 114336550. Archived from the original on 29 November 2010.
{{cite periodical}}
: CS1 maint: unfit URL (link) - ^ "Fine art and Functional Works in Titanium and Other Earth Elements". Archived from the original on thirteen May 2008. Retrieved 8 Baronial 2009.
{{cite web}}
: CS1 maint: bot: original URL status unknown (link) - ^ Alwitt, Robert S. (2002). "Electrochemistry Encyclopedia". Chemical Engineering Department, Example Western Reserve Academy, U.S. Archived from the original on two July 2008. Retrieved xxx December 2006.
{{cite spider web}}
: CS1 maint: unfit URL (link) - ^ "Torso Piercing Rubber". doctorgoodskin.com. ane August 2006.
- ^ "Globe Firsts". British Pobjoy Mint. Retrieved xi November 2017.
- ^ Turgeon, Luke (twenty September 2007). "Titanium Titan: Broughton immortalised". The Gold Declension Bulletin. Archived from the original on 28 September 2013.
{{cite news}}
: CS1 maint: unfit URL (link) - ^ "Orthopaedic Metal Alloys". Totaljoints.info. Retrieved 27 September 2010.
- ^ "Titanium foams supplant injured basic". Research News. one September 2010. Archived from the original on four September 2010. Retrieved 27 September 2010.
- ^ Lavine, Marc Southward. (11 Jan 2018). Vignieri, Sacha; Smith, Jesse (eds.). "Make no bones virtually titanium". Science. 359 (6372): 173.six–174. Bibcode:2018Sci...359..173L. doi:10.1126/science.359.6372.173-f.
- ^ Harun, W.S.W.; Manam, Northward.S.; Kamariah, Grand.South.I.N.; Sharif, Due south.; Zulkifly, A.H.; Ahmad, I.; Miura, H. (2018). "A review of powdered condiment manufacturing techniques for Ti-6al-4v biomedical applications" (PDF). Powder Technology. 331: 74–97. doi:10.1016/j.powtec.2018.03.010.
- ^ Trevisan, Francesco; Calignano, Flaviana; Aversa, Alberta; Marchese, Giulio; Lombardi, Mariangela; Biamino, Sara; Ugues, Daniele; Manfredi, Diego (2017). "Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications". Periodical of Applied Biomaterials & Functional Materials. 16 (ii): 57–67. doi:10.5301/jabfm.5000371. PMID 28967051. S2CID 27827821.
- ^ Qian, Ma; Niinomi, Mitsuo (2019). Real-World Use of Titanium. Elsevier Scientific discipline. pp. 51, 128. ISBN9780128158203.
- ^ Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria (28 September 2015). "Titanium dioxide nanoparticles stimulate sea urchin immune jail cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway". Scientific Reports. 5: 14492. Bibcode:2015NatSR...514492P. doi:10.1038/srep14492. PMC4585977. PMID 26412401.
- ^ Shoesmith, D. W.; Noel, J. J.; Hardie, D.; Ikeda, B. M. (2000). "Hydrogen Absorption and the Lifetime Performance of Titanium Radioactive waste Containers". Corrosion Reviews. 18 (4–5): 331–360. doi:10.1515/CORRREV.2000.18.iv-5.331. S2CID 137825823.
- ^ Carter, 50. J.; Pigford, T. J. (2005). "Proof of Safety at Yucca Mount". Science. 310 (5747): 447–8. doi:x.1126/science.1112786. PMID 16239463. S2CID 128447596.
- ^ Berglund, Fredrik; Carlmark, Bjorn (October 2011). "Titanium, Sinusitis, and the Yellowish Nail Syndrome". Biological Trace Element Research. 143 (ane): 1–7. doi:10.1007/s12011-010-8828-5. PMC3176400. PMID 20809268.
- ^ Cotell, Catherine Mary; Sprague, J. A.; Smidt, F. A. (1994). ASM Handbook: Surface Engineering science (10th ed.). ASM International. p. 836. ISBN978-0-87170-384-2.
- ^ Compressed Gas Association (1999). Handbook of compressed gases (fourth ed.). Springer. p. 323. ISBN978-0-412-78230-5.
- ^ Solomon, Robert Due east. (2002). Fire and Life Safety Inspection Transmission. National Fire Prevention Association (eighth ed.). Jones & Bartlett Publishers. p. 45. ISBN978-0-87765-472-viii.
Bibliography
- Barksdale, Jelks (1968). "Titanium". In Clifford A. Hampel (ed.). The Encyclopedia of the Chemic Elements. New York: Reinhold Book Corporation. pp. 732–738. LCCN 68029938.
- Donachie, Matthew J., Jr. (1988). TITANIUM: A Technical Guide. Metals Park, OH: ASM International. p. 11. ISBN978-0-87170-309-v.
- Emsley, John (2001). "Titanium". Nature'due south Building Blocks: An A-Z Guide to the Elements . Oxford, England, UK: Oxford University Press. ISBN978-0-xix-850340-viii.
- Flower, Harvey M. (2000). "Materials Science: A moving oxygen story". Nature. 407 (6802): 305–306. doi:10.1038/35030266. PMID 11014169.
- Greenwood, N. North.; Earnshaw, A. (1997). Chemical science of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN978-0-7506-3365-9.
- Roza, Greg (2008). Titanium (First ed.). New York, NY: The Rosen Publishing Group. ISBN978-1-4042-1412-5.
External links
- "Titanium: Our Next Major Metal", Popular Science, October 1950—ane of beginning full general public detailed articles on Titanium
- Titanium at The Periodic Table of Videos (University of Nottingham)
- Titanium at The Essential Chemical Industry – online (CIEC Promoting Scientific discipline at the University of York)
- International Titanium Association Archived 4 November 2020 at the Wayback Machine
- Metallurgy of Titanium and its Alloys, Cambridge Academy
- World Product of Titanium Concentrates, by Country
- Metal of the gods
Where Do You Get Titanium,
Source: https://en.wikipedia.org/wiki/Titanium
Posted by: parkerwhaviely.blogspot.com
0 Response to "Where Do You Get Titanium"
Post a Comment